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STATISTICS OF NONLINEARLY TRANSFORMED
COHERENCE ESTIMATES

INTRODUCTION

1're ious re,,uls oi the statisti.s of the milagnitude-sqtared-coherence (MSC)
estimate c and the magnitude-coherence (MC) estimate &, have required sim-
;'lification of hx pergeomutric functions ,F, sometimes \\ith great labor (references
1-4). This effort has been required because of the paucity of asymptotic results for
the , - ulunction. in reference 4, this shortcoming was partially alleviated by
deri\ ing as. mptoiti reslt for the NISC estimate, and doing curve-fitting for the
NI estim , ht.i',hb. ohtaining relatively simple relations for the bias, variance,
and mean-sqLuare error in these t o cases.

Hl,x e% er. \% hIne% er a different nonlinear transformation of the MSC estimate is
considered, the alai\tiCa1 ,ffort must beuin anew to determine the fundamental
ehaxiobr of the ,latitics such as moments. For e\ample, in reference 5, the non-

!inear transtori' tion arc tanh (C2 ) of MSC estimate wxas shown to yield a nearly-
(;aussian random \ariable, thereby faciiitating calculation of confidence limits for
c,,nercoce detectors. How~ever, the mean and variance of the nearly Gaussian
andoni triable %vere deduced by a time-consuming trial-and-error curve-fitting

procedure.

Here, we will rectify this si' iation by deriving simple asymptotic relations, for
larue N, for th. statistics of any nonlinear transformation of , where N is the
number of data pieces employed in the estimation of coherence (reference 6). In this
fashion, we can determine the fundamental behavior of statistics like the bias,
variance, and mean-square error for a particular distortion of ', without an undue
amount of labor. Also, we canl deduce new nonlinear transformations with desirable
behavior.
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ESTIMATION OF MAGNITUI)E-SQUARED COHERENCE

The conple coherence bet\% een to jointly-stationary random proccs,s \() and
y(t) i, defined aG

xy M
y (f) = [G (f) G (f /2'

xx Y

\%here G,,(I') is the cross-spectral density at frequency f, and G (t') and G,,(f) are
the auto-spectral uensitics. The MSC is

C(f) = Iy xy(f)12 (2)

The MSC is frequently estimated according to (reference 6)

I x%(f)I 2 n=  n(f) n
C(f) E N N (3)

G xx M Gyy(f) L Ix n~f L2  E n f M I

YY n=1 n=1

where N is the number of data segments employed, and X,(f), Y,(f) are the
(discrete) Fourier transforms of the n-th weighted data segments of x(t) and y(t).

The staiistics of a nonlinearly transformed version g(6 of MSC estimate tare of
interest here. We drop frequency dependence f henceforth, for notational sim-
pliciiy; thus C is the true (unknown) value of MSC that we are estimating.
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AVERAGE VALUE OF TRANSFORMEI) COHERENCE ESTIMATE

The probability density f'unction of MSC estimate (is given by ref'ercnce I, eq. (2)
et seq., as

p(x) = (N - i) ( C ) [(1 _C)(1 X) N-2 PN-_1 -+ )
for 0 < x < 1, 0 < C < 1 , (4)

where P.N-I is a Legendre polynomial. If L is subjected to nonlinear transformation
g(), the average value of the output is

I

A = E{g(1 =J0 dx p(x) g(x)

For large N, probability density p(x) is peaked about* x=C; see reference 1,
figures )a-Ih. Accordingly, the major contribution to (5) will come from this
neighborhood, so we expand transformation g about this point:

A 1dx px E 1- g (C) (x _ C)n = 0 1' ((n)
0 n=O n!nOT n '(6)

where
,1

Vn =J dx p(x) (x - C)n  (7)

0
is the n-th moment of estimate ( about true value C.

An expression for general moment E{ "I} is given in reference 4, page 2, along
with specific simpler results, for m = I and 2, in terms of the Gauss hypergeometric
function ,F1 . In appendix A here, v, and v, are developed in an asymptotic ex-
pansion through order N-2; in appendix B, the dominant behavior of v is developed
for all integer n. The results are

( - C) + 2C(l C)2 + O(N- 3 )

21 2 28

2C(1 - C)2  2(1 - C) 2 (1 - 6C + 7C) 3
= N + N2  + O(N = ) (9)

*For U = , I }, % ierca% Ior C 0 o. pt\) - (N- I I .)N-2. W ' ccludi ihese at picaI cawc'. I rom
coniidcraiion here. Thewc prohai hi i I dell Nt I I iii In tar( I alid ( - 0 arc Nu Ii'ciill Ih iI IllaI
iheN c'an he ineiigalted separaick .

Ls
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n2(1C) for n even

(n/2)! N n/2

V as N - ;
n

n! C 2 (1 - C)n [I + C + n(l - 3C)] for n odd

n+1

2 ).N
(10)

In particular, it is seen that v, and v, are O(N I), v. and v4 are O(N-2), and v for n>5
is O(N 1) or smaller.

Combinine these results in (6), we obtain for tle average value of the device

output:

A = g(C) + N [g' (C) + Cg"(C)_

+ G1-C2  2Cg' (C) + (1 - 6C + 7C2  g"(C)

N 1 C2 2in

+ 2C(1 - C)(1 - 2C) g"'(C) + -_ C (1- C)2 g{(C)j + O(N ).
(21)

This result gives the fundamental dependence on N, C, and transformation g.

Through O(N-1), we need to evaluate the nonlinear function and its first two

derivatives, but to be correct to O(N- 2), it is necessary to evaluate up through the
fourth derivative of the nonlinear function.

The bias at the output of the nonlinear device is defined as

B = E{g(C)} -g(C) = A - g(C) , (12)

and is given by the terms after g(C) in (11). It is generally of O(N I); this will be
elaborated on later.

A particular example of the appication of (II) is afforded by transformation

g(x) = x. Then the device output is just the MSC estimate, and (12) yields bias

B = (1 - C) + 2C(1 - C)2 + O(N-) (13)N N2 (
N

in agreement with reference 4, eq. (8).

4I
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ALTERNATIVE FORMS FOR AVERAGE VALUE

First-Order Approximations

Let us retain only the terms through ()(N in I I ) and 12); thell

A.-gCC) (1 - C) [g'(C) Cg (Qc] asN-

(I _(C) N2s+
(14)

and

(I - C(IC)

Now we approximate the right-hand side of (14) by the quantity

AI g(c + a (  )  (16)

which can be developed as

a(C} g
A! g (C) + a(C '(C) as N

(17)

and we choose a(C) so that (14) and (17) match as N becomes large. There follows
the approximation to the average,

A1  g + (1 + C -(C)

g (C)1(18)

The bias approximation follows from (12) and (18) as

B,~ = (1 N 1 +- "C g (C)
N L C (19)

Forms (18) and (19) turn out to be more useful than (14) and (15), respectively, in
some cases. For the MSC estimate itself, glx) = x, and the results yielded by (18) and
(19) are identical to(14) and (15), respectively.

For the MC estimate ',we have

5
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gx x112  1 -1/2 1-3/2
g = x) , g'(x) = " x g"(x) (20)

24
[-hen tile equat ion" above %leld2

A" C12 + (Is NC)-2-a,=4NC1 / 2  aN(21)

A =C + (1 2N 1/2 ((22)

2
(1 C as N 2

4NC1 [ 2  (23)

/ (1 1/2

1  C + 2N - (24)

Whereas (21) and (23) blowv up as C-0. (22) and (24) remain finite. In fact, (24) is
precisely the result obtained by curve-fitting in reference 4, page (20), eqs. (39) and
(33), to O(N-1).

This is a fortuitous situation for approximations (22) and (24). In the derivations
above, it %%as presumed that transformation g(x) could be well approximated in
terms of a few derivatives at x = C and that C>0. These conditions are obviously
violated for MC device (20) as C-0; nevertheless, forms (22) and (24) are still
reasonable in this limit. This situation will arise for other nonlinear transformations
considered below. The basic problem is that (21) is not a uniform asymptotic ex-
pansion with respect to C (reference 7, chapter 9); it holds as N-oo, for fixed C>0.

For the transformation yielding a nearly Gaussian random variable, discussed in
the Introduction and studied in reference 5, we have

g(x) arc tanh(x/ 2  g'(x) = 1
2xl/ - x)

g"(x) = x 1 (25)
4x 3 2 (1 W

Application of (14), (15), (18), and (19) yields

A arc tanh(C 
1 2 ) +- as N

4NC (26)

6
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A, a rc tanh (C+ 1 2N )) (27)

B , Cs-* 11 (28)

B1  arc tanh C+ 2 2) -arc tanh(C) (9

Result (27) agrees ' ithI reference 5, eqs. (7) arid (8), which %%as obtained only after-
considerable trial and error and curve-fitting. Agin (the appro\inlatiom (27) and
(29) are better behaved than their progenitors (26) and (28),which blo\% uip as C-0.
As above, (26) is not a uniform asymiptotic expansion with respect to C.

Finally, let uts inquire into what nonlinear transformation wkould yield zero bias,
to 0(N 1). Equation (15) indicate,, t hat thle only such dev ice mulst Sat isl

d- {Cg'(C)} = 0 (30)

That is, thie logarithmic transformation

g(x) = a ln(x) + b (1

has zero bias, for any' constants a and b, to 0(N-1).

Second-Order Approximations

We now retain terms through 0(N-2) in the average (11) and represent it by
shorthand notation:

A - g(C) + OE(C) + - (C) aN N 2  sN (32)

We rio\% want to fit this asymptotic expansion by the approximnation

A g (C+ a(C) +b(C))

to 0(N-2 ). Accordingly we develop (33) as

A, - g(C) + g'(C) (a(C) + b(C) + "rC 2(C) as N -

N _2) g a 2
N N (34)

7



IR 6445

Comparison of (32) and (34) .ields

a(C) - OcC) , b(C) =(C) - g"(C) 2(C)
g' (C) g' (C) 2[g' (C)] (35)

svhere from (II, e already kno%%

ax(C) (1 - C) 2 [g' (C) + Cg"(C)]

(36)
a(C) = (0 - C) 2 [2Cg'(C) + (1 - 6C + 7C 2 ) g"(C)

1 2 2 ,,+ 2C(1 - C) (1 - 2C) g"(C) C1 - C) g"(C),

Equation (33), together , %ith (35) and (36), gi.cs , the second-order approximation to
the average value. The result fr a(() in (35) is idemical to that obtained earlier in
(18); ithat for b(C) is quite inmoled aid requires a specific transformatloll for

simplification.

The results for bias are nom% obtained h conhining (12) and (32).

B (C) +(C)
N N 2 N(37)

and by combiling (0 2) and (33),

C a(C) b(C)\
B - C + 2 g(C)

(38)

Thus our general result, to O(N -) are given by (32), (33), (37), and (38), 'here the
various parameters are given in (35) and (36). Now we apply these results to specific
examples.

For the MSC estimate itself,

g(x) = x , g' x) = 1, g"(x) ="(x) = g"'tx) = 0 , (39)

and there follows
2 2a = = (1 - C) , b = a = 2C(1 - C)

A.A c + + 2CA( - C) 2
2 N N2 (40)

B,. 2 =(1 - C) 2 2C1 C) 2

B+ 2C(1

8
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Thi,, last relai ion ha, aIready been no(ed in (13).

For the M( esiniate. \e have

1tx/2 g, 1 -1/2 , 1r (x-3/ 2
g(x) = g (x) = , g (x)

gir 3 -5/2 '"(x) IS -7/2

g x) g 1 (41)

Equation (36) yields

2 2 2(1 - C) (1 -C) (1 + 3C)

4C 11 2  32C 3 / 2  (42)

and (35) yields

(1 -) b (1 C) 2 (1 + 2C + SC2)
a = 2 b 8C 43)

Then (32) and (33) yield, for the results on the average value for the MC e,,irnaie,

2 2 2

A(1-C) + (-C) (1+ 3C) as N-
122 3/2 (44NC 1 2  32N2C (44

/22 2 1l/2

A C (1- C)2  + (1 - C) (I 2C + SC2) 1 /
C+ 2N 8N'C (45)

while (37) and (38) give the corresponding results on bias; namely, ,,ubtract C
from each of the expressions in (44) and (45).

We now observe the disconcerting result that inclusion of the O(N 2) term in
approximation (45) blows up at C=0, whereas the O(N I) term doe,, not. This
suggests that, for small C, whereas approximation A, in (16) was well-suited to the
available information to O(N - 1 ), there is a more suitable approximation than A, in
(33) when O(N 2) information is available on the average value; this possibility is
taken up in appendix C. Basically, the fact that (44) is not a uniform asymptotic
expansion, with respect to C, is causing this singularity at C =0. However, (44) and
(45) yield very good approximations for large N and C>0.

For the arc tanh (x-) transformation, we augment (25) with the two additional
terms

= 3 - 1Ox + 1Sx 2  , frW"(x) = 3(35x3 _ 35x + 21x - 5)
8x 51 2 (1 -x) 3  16x7 / 2(1 -

4

(46)

9
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Then from (36),
1 + C (1 + C) (1 + 6C + C 2)

____ 6 (:6CC(47)

4CI/2 ' 32C 3/ 2

and Ifrom (35)

1 - C 2  (1 - C 2) (1 + 2C - C 2)
2 b 8C (48)

The aerage output can no" be obtained fron (32) and (33) in the forms

A -1arc tanh (C 1( + C) (1 + 6C +  C 2)
4C1232N 2 C3/2 as49-+ )

2N221/2

A = arc tanh + 2N + 2 C8N2C 
(50)

Since arc tanh (x':) - x': as x-0, the same behavior regarding the blosup at C = 0
of the O(N-2) term is expected and present, just as for the MC estimate relations in
(44) and (45). The bias of the arc tanh (x' ) transformation is obtained by Nub-
tracting arc tanh (C':) from both forms in (49) and (50). A modification of ap-
proximation (50), better suited to small C, is developed in appendix C.

For the logarithmic transformation of the MSC estimate, we have

g(x) = ln(x, g'(x) = x 1  g"(x) , -x

g"(x) = 2x-3 , g (x) = - 4
-6x(51)

Equation (36) yields the surprising result

a = 0 , 8=0, (52)

for which (35) immediately gives

a 0 , b 0. (53)

Thus both (32) and (33) yield for the average value of the device output

A-A 2 = In(C) + O(N- 3 ) (54)

Thus the unbiased character of the logarithmic distortion holds to at least O(N 2),
not just O(N 1) as claimed originally in (30) and (31). This behavior in (54) holds of
course for C>0, as noted earlier.

10
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In appendix 1), the average value of the ln(x) transformat ion is derived exactly; it
is given by

N-1 ( On
A i _I (- C)n  for all C and N.

n=l (55)

By completing (Ile summation to infinity, and then subtracting this added quantity,
we can write (55) as

co (1 _ C)n
A = in(C) + ( n  for C > 0

n=N (56)

which has no approximations whatsoever. The summation in (56) is the bias and can
be upper-bounded by

B ( - C)N exp(N ln(l -C)) for C > 0(57)
NC = NC (7

Thus the decay of the bias is exponential in N for fixed C>O. This explains why the
coefficients of N-' and N- 2 were zero in (53); in fact, all coefficients of N-k would be
zero for k>l.

We should also observe (reference 8, eqs. 6.3.2 and 6.3.18) that average

In (C) + NC forC>0
A -as N1 NC

-y - ln(N) + + - forC=0
IN +(58)

Thus as tile number of pieces, N, used in the MSC estimate increases, tile average A
saturates at In(C) for C960, but gets arbitrarily negative for C =0. This is due to tile
singularity of tIle transformation ln(x) at x =0.

The last nonlinear transformation we consider is the v-th law device:

(n) n -n
g(x) = X, g (x) = (v + 1 - n) x

(59A)

Substitution in (35) and (36) yields, after simplification,

a =v2(1 - C) 2 C V-1 ,
1 2( - 2 v -22
j-v2 (I C) C [1 - v + (1 + v) C 2 (

2 ~(5913)

and

II
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a = v(1 - C) 2  ,

b = '(1 -C)
2 [{ 4 232 - 'v(1 -C) (1 4 3C)] (60

2C

respectively. The average output of the v-th law device is then available upon
substitution of (60) in (32) or (33). These results reduce to (40) for v = 1, and to (42)
through (45) for v = 1/2. It can be seen from (60) that the only case where b does not
tend to infinity, as C tends to zero, is for v = i, the MSC estimate. All other cases do
not yield a uniform asymptotic expansion in powers of N-1, with respect to C. A
modification of (60) to circumvent the singularity at C =0 is presented in appendix
C.

12
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VARIANCE OF TRANSFORMED COHERENCE ESTIMATE

In order to determine the variance of the transformed coherence estimate, w~e
need to be able to evaluate, in addition to (5), the average

1 1

Q E E{g 2  f dx p(x) g2(x) dx p(x) q(x)
0 0(61)

%%here we have defined
q(x) = g2(x) (62)

But now we can use average output (11) on (61), with a re-identification of g in (11)
as q here. So we need the quantities (using an obvious shorthand notation)

q = g2 , qI = 2ggI , q , = 2gj + 2go g' , q'" = 2gg"' + 6g'g"

q =2gg " + 8g'g + 6gg , (63)

where all these functions are evaluated at C. There follows from (II),

Q 2  2(1 - C)2  (1 -C) 2

+ [gg'+ Cgg" + Cg'g I + N2  [4Cgg'N N2

T 201 - 6C + 7C2) (gg"+ gig')

4C(1 - C) (1 - 2 c a (gg"'o ag'g") 3 osm+ C2(1 - C)2 (gg'"" + 4g' go" + 3g"g")] + O(N-3 ) (4

The variance of the device output is Ithen

V = - A(65)

Substitution of (11I) (as is) and (64) in (65) and cancellation of a number of similar

terms yield the desired result for the variance of the device output :

2C(1- C) 2  t (1 C)2= N [ g+ g 9 (1 - 10C + 13C 2
N g g + N

+ g g"2C(1 - C) (5 - IC) + g"g'2C2(1 - C)2

"' 4C 2 -3(66)
+gg" 4C(1-C) 2 1 0(
+ 19 it 4C2 1 - Q 21 + O N- 3 

.

Here g'= g'(C), g = g ''(C), g'" =g "'(C). We observe, that to O(N-1). only the
first derivative, g'(C), is required for the variance; recall that to O(N-t), the
average, (II), required g ''(C) in addition. Also g ''''(C) does not enter (66), at least
through O(N- 2).

13
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The Itirst examnple we apply (66) to is the MSC estimate, g(x) = x. There follows
immediately

V = 2C (I C) 2 + 1 - C) 2 (1 10C + 13C 2)+ O(N-3i 2+0N .
NN (67)

This result agrees with reference 4, eq. 9, to O(N- 2) when the latter is expanded in
powers of N - .

Next consider the MC estimate as given in (41). Employment in (66) results in
(- 2 2 2-

V - C) (I - C) [1 + 2C - 11C 2 + O(N " )
2N 8N2 C (68)

The first term in (68) agrees with that in reference 4, eq. (33), to O(N-1). The second
terms do not agree, due mainly to the C- 1 dependence in (68); tbat is, once again,
(68) is not a uniform asymptotic expansion with respect to C. A modification to the
singular contribution is considered in appendix E; the result is given by (E-2):

(1 _ C)2 21 _ C)2 (1 - 3C)

2N 2N2  (69)

This modification for the variance of the MC estimate agrees precisely with the
terms through O(N- 2) of reference 4, eq. (33), when the latter is developed in a
power series in N-t.

The pertinent equations for the arc tanh (x ') transformation are presented in (25)
and (46). Their use in (66) for the variance yields

1 1 -6C+C 2

2N 8N2 C (70)

Tha is, to O(N- 1 ), the variance of the arc tanh (x' ) output is independent of the
true value, C, of the MSC. This result has been noted and utilized before; see
reference 9 and reference 5, eq. (9). Furthermore, from (66), it may be seen that the
only device with variance independent of C, to O(N- 1), is in fact q, arc tanh (x ' :) +
q,, where q, and q, are constants.

A modification to (70) is derived in (E-3) and (E-4), namely,

1 1
2 N2 (71)

That is, the modification indicates a variance independent of the true value C of the
MSC, through O(N- 2).

For the logarithmic transformation, we substitute (5 1) in (66) and obtain

14
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2 2 22 (1 Q C (1 -C) (1 + C) -3NC N2C2 +O(N (72)

Here, even the O(N- i) term tends to infinity as C-0; this is due to the singularity ot
the ln(x) transformation at x = 0. Evaluation of ihe mean square value and variance
of the device output is conducted in appendix D; In particular, for the anomalous
situation at C =0 in (72), we find the exact result (D-17):

V 2 for C = 0
k=1 k (73)

Asymptotically this behaves as (D-18):

7 1 1 O(N-3)
T 6 N 2 Q ) forC=0

2N (74)

Thus, whereas the variance of the logarithmic device output tends to zero as N-- if
C>0, according to (72), the variance stabilizes at t2/6 as N- -  for C=0. This
means that increasing the number of pieces, N, employed in the MSC estimate will
not help in reducing the fluctuations at the device output if C=0. However, it
should be recalled from (58) that the average device output becomes arbitrarily large
negatively in the case of C =0; thus the ratio of standard deviation to average value
does decrease to zero as N--, for C=0 as well as for C>0. This particular
behavior of'the ln(x) transformation is due to the logarithmic singularity at x =0.

For the v-th law device, we employ (59) in (66) and find

S
2 v2(1 _ C)

2 C2v
- 1

N
v21 _C2 C2v-2

+ V 12  [ + C)2 -6v(1 + C) (1 - C)
N2

+ 6v2I 0 -C) 2  + O(N- )

(75)

For v = I, this reduces to (67), while for v = V2, it becomes (68). A modification to
the singular component of (75) at C =0 (for v < 1) is obtained in (E-6):

2 2 2v-1 C)2v 1- C) C 2(1 - 3v(1 - C))
N L + N 1 (76)

For v= . this reduces to (69). The variance approximation (76) is not singular at
C =0, provided that v > ".

15
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MEAN SQUARE ERROR OF
TRANSFORMED COHERENCE ESTIMATE

The desired output of the nonlinear transformation is the non-random constant
g(C). However, the actual output is g(6 ). We therefore form an average squared
error as

2
S =_ E[g(C) - g(C] I

(77)

But this can be expressed in terms of previously evaluated quantities according to

S = E{[g(C) - E{g(C)} + E{g(C)) - g(C)] 2 1

A 2 2 2
= E{jg(C) - E{g(C)}] I + (E{g(c)) - g(C)] = V + B

(78)

where the cross-product term averages to zero. When we use the results of (I!), (12),
and (66), (78) yields the general result for the mean square error:

S = 2C( - C)2  (1 -C) 2 [2g'(1 - 6C + XC2N 7''
N

12gk"C(l - C) (1 - 2C) + 3gg"C2(1 - C)2

+ 4gg"C 2 (1 C) 2 ] + O(N 3)

179)

For the MSC estimate itself, g(x) = x, and (79) yields

S= 2C(I - C) 2(1 - C)2 (1 - 6C + 7C2) -3N N2  +O(N

(80)

in agreement with reference 4, eq. (12), when the latter is expanded in powers of

NN

For the MC estimate, g(x) = x , and there follows

S =(I C)2  (I -C)2( + 6C - 23C 2) + O(N 3 )
2N 16NC (81)

For the arc tanh (x:) device, use of (25) and (46) in (79) leads to

16
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1 1 -14C + C2=2_+ O(N'3)
S 2N 16N2C (82)

To O(N-1), the mean square error is independent of tie t rue value, C, of the MSC.

For the logarithmic transformation, (79) gives

S = 2 (1 - Q)+ (1 - C) (1 + C) O(N-3
NC N2 C2 +ON)NC (83)

This equals variance (72), of course, since the bias is zero to all orders N-k, as shown
in (57).

Finally, the v-th law device g(x) = xv yields, with the help of (79),

S 2v2 ( I - C)2 C 2 v - + v2(1 - C)2 C2v-2

N 2

0[(1 + C)2 - 6v(1 + C) (1 - C) + 7v (1 - C) 2 ] + O(N
- )

(84)

For v = 1, this specializes to (80), while for v /2, it becomes (81).

17
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DISCUSSION AND SUMMARY

Asymptotic expressions for (te average value, bias, variance, and mean square
error of the output of a nonlinear transformation have been derived, to O(N-2 ).
Extensions to higher moments of the device output are easily accomplished by
interpreting q in (61) as the appropriate moment of g, as was done in (62) for the
second moment. For example, we could evaluate the third cumulant of g(" ) in this
Iashion.

The modifications adopted here to attempt to alleviate the singular behavior at
C=O of the terms of O(N--), for the arc tanh (x") and v-th law devices, are
recognized to be incorrect. The reason for the seemingly anomalous behavior is that
the results here are not uniform asymptotic expansions with respect to C. The
proper way to handle these cases is to derive the appropriate uniform asymptotic
expansions. However, this would likely be a time-consuming and tedious task; the
methods of reference 7, chapter 9, would be very relevant in this regard.

It is now a simple matter to evaluate the statistics of any additional candidates for
MSC estimate transformation, such as -In (I-x), ~(l-x)v, -arc tanh ((-x) 1) for
example. These devices are not necessarily suggested for actual use, but rather are
obvious modifications of the ones considered here; they have been chosen to be
monotonically increasing over (0, 1).

18
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Appendix A

Asymptotic Development of First Two Moments

From (7), the n-th moment of &'about C is
1

( nv = idx p(x)(x -C)'~ J (A-I)
0

Of course v,, = 1, and v, = - C, where moment

In
S f dx p(x) xn

n f (A-2)
0

We now employ reference 4, eq. (5) to obtain

I N - 1-C + -+ K-N C F(1, 1; N + C)
S+ I (A-3)

At this point, we expand all the terms in (A-3) to O(N- 2); there follows

1 = -c+-+ (i - 2)- - C + N + 2 + (N + 2)(N + 3)')

+ O(N
- )

- -C + ".+ 1 ++ 2 +0 (N

(1 - C)2  + 2C(1 - C)2 + O(N- 3 (A-4)

N N 2

after simplification. Also p, = C + v, gives M, to O(N- 2).

For n =2, (A-I) and (A-2) yield 2[
V 2  = 2  - 2C 1I  + C2 I (A-5)

An expression for 'A2 is given in reference 4, eq. (6); we develop it in like fashion to
(A-4):

= N2 + 2N - 2 + +) (I - N N- +

2 N N N 3  J~

2 -3 (A-6)(N NC + 2C) F + 0N - ) ,

A-I
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where 2C2

F = I N + 2 + (N + 2)(N+3)

6C 3  
+24C 

4  -+ (N + 2)(N + 3)(N + 4) ' Q O (A-7)

We must keep terms to O(N- 4) to counter the N2 terms in (A-6). Substitution of(A-7)
in (A-6), expansion of all the products, and retention of the highest orders yields,
after considerable manipulation,

2 C1-C 2  2 2C2 4C(I - C) 2  2(1 - C) (1 - 3C) -3 (-
2 N N2  +O(N (A-8)

Finally, substitution of (A-8) and (A-4) in (A-5) yields

2C(1 - C) 2 + 2(1 - C) 2 (1 - 6C + 7C 2 ) -3v2= N +N 2  +O0(N-3) (A-9) '[

Although continuation of the procedure above to higher moments such as a and
P44 (and thence v3 and v4) is possible, it is extremely tedious and error prone. A useful
asymptotic development of (A-I) is proferred in appendix B.

A-2
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Appendix B

Asymptotic Development of n-lh Moment

The n-th moment of interest is given by (7),
1

V= f dx p(x)(x C) n  (B-)

0
while p(x) is given by (4). For large N, the probability density p(x) peaks in the
neighborhood of x =C. To see this, we use the asymptotic expansion of the
Legendre polynomial given in reference 10, page 194, eq. 8.21.1:

(+ (y 2  1)1/2)
m ~~as m *, for y>l1

(27rm) 1 1 2 (y 2  1 1/4 (B-2)

We now identify m = N-1 and y= ( + Cx)/( I -Cx); then (B-2) and (4) yield

p(x) _ (N - 1) 1 / 2 (1 - C) N (I -x) N-2as , for Cx>021/2 (x1/4 /(1-
2/11 (Cx) 1 -ax) (B-3)

The function (l-x)/(l- C/x)2 peaks at x =C; raising it to a power sharpens this
peak. The exact location of this peak to O(N-') is considered in appendix F. Sub-
stitution of (B-3) in (B-I) yields

N 1 2 ( dx(x -C) n I - .
n 1/2 1x/4(1 - x) 4 1/4 2  1- X) 2"

a s N - , co (B-4)

for C > 0

where the integration can be confined to the neighborhood of the peak of the
bracketed function at x = C.

The general problem is now to determine the asymptotic behavior of the integral

I = f dx(x - C) n f(x) [d(x)]N (B5)

as N - - , where the integration is confined to the neighborhood of the peak of +(x)
at x =C. This problem is undertaken later in this appendix; here we shall merely
make the identifications and evaluate the required parameters. We use only the
dominant term in that asymptotic expansion:

B-I
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___- _ _ 1 -x
f(x) x1/4(1- x)2 , (x) = 1 '

b f 1 b f 7C -1

o fo C1/4 - C) I 1 4C5/ 4 (1 C) 2

ob0  1_C', 
- 0 ,

-1 3(1 - 3C)
- 2C(I - C) 3 3 4C 2 (1 - C) 4

-1 1 - 3C2 4C1 C2 '~ 2P34C(l - C) 8C 2(1 - C)3

n 1) 4C(1 C) 2  for n odd. (B-6)

The result for integral I in (B-5) then becomes

,(n1) [4C1 - Q2n+ 1

IN 1 "4 for n even

(1 - C) N C 1/ (1 - C)

I-, ]n

r(2+ 1) [4C (I - C) 2] [f + 1( - C + n(1 - 3C)]
for n odd

(1-C) N N2  4C 5 / 4 (1 - C)

as N o

for C > 0 (B-7)

Substitution in (B-4) and ,implification lead to

n! Cn/ 2 (1 - C) for n even

(n/2)! N n/
2

nV - [ as N -

n-1 for C > 0

n!C ( - C)n [I + C + n(1 - 3C)] for n odd

n+1Y

N' (B-8)

B-2
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This is the desired general result; particular values are

2 N
VoV 1 (1 N C) 2 2 2C ( 1 - C)4

12C(1 C) 3(1 - 2C) 12C 2(1 C)4

N N0 N2• 4  , N 6

60C 2(1 -C) 5(3 -7C) 3120C3(1 C) 6

N3 6  N3 
;

as N , for C > 0.
(B-9)

Asymptotic Development of I

The integral of irterest is gien in (B-5), where f(C) # 0 and where n is an integer.
+(x) has a maximum at the point C which is interior to the range of integration. We
shall use and extend the procedure given in reference 1 1, pages 272-274, to develop
the asymptotic expansion. We also limit the derivation here to the case of n even;
the extension to n odd is presented without derivation.

Let A = x - C and

1 2 2 1 1 44(x)-qO+ -- q 2  + 3  3  +4 9 p as A 0

0 o[ 1 + P2 A
2 + P3A 3 + P4 A4] (B-10)

where
m*

0 ((B-I

Also let
1 f22

f(x) , f + fA + -LfA as A 0
0 1 2 ! 2

Sb + bIA + b2A 2  (B-12)

where

f__ ftm)(C) b m
m m M! 113)

Substitution in (B-5) yields

B-3
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I- fdA An(bo + b I A + b2 A
2) 5 exp N In(1 + p + p A + p A

N fdA A' (b + blA bA22 exp(N A2 + A3  4 24
+ 2/ (P 2 P3 + 4 2)

NdA n (b + + b2 A2) exp NIp 2)

exp(Np AA3) exp(N(p4  p P2/2)1),(-4

where we utilized the fact that p 2 < 0 since +(x) peaks at x = C.

Now let t A /N': in (B- 14) and define q = (n+ ])/2; then

I 0 0 dt t n ( +

q f 0 +-7+2--- 1 + N

N N"

ex 2 p 3 ) x N2/t)
( ~ ~ IP1 )pe-p 2 /2-/

NN

.ex (tp2 t2 nx~ ~ exp N~ b2)

(.of dt exp( I 2bo  t0(b/ 0 3bo2 + N2l2

q t' P(I~pI2 t~ b + 4N11 2 (,bt4)

N - )N b - )

ON

q i f dtbe p - 2) b + 2 I + ii3

as N + , for n even, (B-IS)

where
(q)N n + 1

m m q = 2 for n even
I021m (m 2 1)(B-16)

The procedure for n odd is exactly as above, except that +(x) and fQx) must be
expanded to one higher order than in (B-10) and (B-12). All other sym ols are as
defined above, except that now

B-4
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q n+ 
1  for n odd (B-17)

There follows for (B-5),

Nr(q) 1

b + o bp + b

32 + (2a b p3 + - p2/

+ 34bop 3 + 3bp2 + 2 b2 p3 + Bb 3  as N - co , for n odd.

(B-18)

The desired asymptotic expansion of integral (B-5) is given by (B-15) and (B-18)
for large N, where N need not be an integer. In deriving (B-7) and (B-8) earlier, we
only used the dominant or leading term of (B-I5) and (B-I 8). Extension of (B-7) and
(B-8) to the next term would require consideration of the correction terms in (B-15)
and (B-18).

For n =0, the leading term of (B-I5) reduces to reference 7, pages 211-212, eq.
5.6.21. Thus we have generalized here to nonzero n, both even and odd, and to the
first correction term.

B-5/B-6
Reverse Blank
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Appendix C

Modified Approximations For Average Value

The approximation A, developed for the average of the MC estimate in (45) tends
to infinity as C-'0. That is, the b(C) term, (43), which is used in approximation (33),
blows up at C =0. In order to rectify this situation, we reconsider the coefficients

( - C)2  (1 - c)(I + 2C + sc 2)2 b 8C (C-I)

Both a and b have the common factor (I-C) 2; this was also true for the MSC results
in (40). Keeping this factor, we rewrite b in (C-I) as

b 1-C)2 [(1 - C) 2 + 4C( + C)]
8C

(I - C) (1 - C) 2(1 + C)
8C +2 (C-2)

The lead term in (C-2) has a fourth-order zero at C = 1, and a smaller scale factor;
therefore its neglect would not significantly affect the value of (C-2) for moderate
C. Also this term contains all of the singularity at C = 0. Moreover, since (45) is an
approximation to an asymptotic expansion which is not uniform with respect to C, a
reasonable modification to (C-2) is to drop the singularity while trying to realize as
little effect on larger C values as possible. Accordingly we adopt modified coef-
ficient

- (1 - C)2(1 + C)
2 (C-3)

thereby realizing the modified approximation to (45) for the MC estimate,

2 = (C + (1 - C)2  (1 - C)2(1 + )1/2 C
2 C+ 2N +2N 2  (C-4)

This result agrees precisely to O(N- 2) with reference 4, eqs. (39) and (33), when the
latter are expanded in a power series in N-1; observe that D = O(N- 2) there.

Notice that we have modified the approximation (45), but not the asymptotic
expansion (44); we must accept the asymptotic expansion as it is, since it is the
unique expansion in powers of N-' for this problem. But we can do what we please
with an approximation.

For the arc tanh (x") transformation, coefficients a and b are given by (48) as

1 - C2  I - C2)(I + 2C -C 2 )
a - 2 , b= 8C (C-5)

C-I
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We regroup the terms in b (keeping the common factor I-C 2 present in both terms)
so as to minimize the effect for larger C:

b=18CC [ 0 2 + 2C(2 - c)

= (1 + C(1 - )3 + (I - C2)(2 - C) (C-6)

8C 4

The modified coefficient is obtained by dropping the singular term:

- (1 - c2 )(2 - C)

4 (C-7)

The modified approximation for the average value is then

S= arc + 2  (1 - (2 C))1/2)

((C 2N 4N2 (C-8)

This is an extension of reference 5, eqs. (7) and (8).

For the v-th law device considered in (58), the coefficients are repeated from (60):

a = v1 - C) 2 , b 2C 1 - v) - 2(1 - v)C + (1 + 3v)C2]

(C-9)

Again, regrouping the terms in b, and keeping the common factor (I -C) 2 , we obtain

b- v(1 C) 2  0- V) - Q)2 + 4C(1- v + vC)]

\ +(1 - C) 2v(1 - C) 2 (1 -V + vC) , (C-10)
2C

where the singular factor has the fourth-power of (I-C). The modified coefficient

follows as

2v(1 - c)" (1 - v * VC)
(C-IlI)

(This reduces to (C-3) for v= ':. For v= I, the lead term in (C-10) is already zero,
and (C-10) equals (40).) The modified approximation for the average value of the
output of the v-th law device is

A2- (c+ , 1 c 2 v ,1 -C) 2 U, -V + V) V
A2  (C+ N + 2  (C-12)

N )
An approximation to the bias is afforded by subtracting C' from (C-1 2).

C-2
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Appendix D

Statistics of Logarithmic Transformation

Average Value

According to (5), the average value of the output of the logarithmic trails-
formation is given by

A=f dx p(x) 1n x
-o (D-1)

Instead Of using (4) for the probability density, we use reference I, eq. (3): (1
f(1 N N-2

A = dx (N - i)(1 - C) N (1- x) F(N, N; 1; Cx) in x

x)k~ * N-2 xk1
(N - 1)(1 - C k (1) ( ) dxl-x) N - x nx

k=O ~'k ~'k 0 (D-2)

We now use reference 12, eq. 4.253 1, to get, after simplification,
a-- CI - C o (N)k Ck

Ak -(1 NN kC [ip(k + N) - i(k + 1)] (D-3)

Then we employ reference 8, eqs. 6.3.6, 15. 1. 1, and 15.3.3 to develop

N (N) Ck N-2
1A= -(i-C k+1+j

E c-N k: E- k + 1 +
k--O 4=0

-( C) N (N) Ck N-2 I

k: f dxx(D4k=0 j=0 ' (D-4)

with the latter step taken to realize a product of k and j dependence. Interchanging
summation and integration, and performing the sums (reference 8, eq. 15.1.8), We
obtain

A -(1 - C) dx (I- Cx)-
N I x N-1

0 -X (D-5)

Now let

2 X (1 C1 1 C (D-6)

to get

D-I
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00( +y N-i N-i
A -C Jfdy (1+N

10 (1 + C ly)N

N N-2 N-1 N0d

j=0 (1 .. C I'

N -2\. N-2 C N-I-

1= N-1 j=0

k=I k=1iD7

we employed reference 12, eq. 3.194 3, to evaluate the integral. Thus the difficult
integral in (D-2) involving powers, a logarithm, and a hypergeometric function
becomes a very simple polynominal in I -C.

If we express (D-7) for C>O as

fi (1N -)+E( C)n = In C + C)
n1 n nN nn=N n (D-8)

we can upper-bound the bias (remainder) in (D-8) according to

-C) ~ C) 10 (1 -C) [)21 (1 Q 2 3

n=N

(- - epNl( ) for C > 0 .(D-9)

NC NC

Since C>O, the logarithm in (D-9) is negative, leading to exponential decay of the
bias with N.

Mean Square Value

To determine the variance of the logarithmic output, we need to evaluate, in
addition to (D-1), the mean square value (61):

Q f dx p(x) (in x) 2  
.(13-10)

The expression for (D-10) is the obvious modification of (D-2) obtained by
replacing In x by (In X)2. Then using reference 12, eq. 4.261 17, we get (using
C= 1-C)

=N k ~ I&+ + ~'( 1-'~
Q C, , [Ok+ N)- 1)] 0 k+ ) tp( N) 1

k=O (1)k
(D-I1)

D-2
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Now use reference 8, eqs. 6.3.6 and 6.4.6, to find

N= ° (N) k c kI(N-2kE 1 )2 +N-21 I

Q = C1 ()k- k + 1 + j 1 2
k=- j= (k + 1(+ j) ID-12)

At this point, we have been unable to sum this expression in closed form for
general N. However, defining

1C
n

L = -ln(1 - C) n
n=1 (D-13)

we find that we can evaluate the following cases in closed form for any C:
2 L

Q = C 1 L 2 for N = 2

Q = C-- + - I for N = 3,

Q =2C-%+ 1 + (1 - + for N =4

C1  3 1 6 25 20 20

12 C +4 _C2 + j-+ 2 3-.
C (1 - c) (1 - C) 3

" 6- + - -C for N = 5 (D-14)
C_

Apparently the general solution to (D-1 2) is of the form

___ a LN-2 d 1

Q n (1 C)] + n (D-15)

However we have not been able to determine the general dependence of the coef-
ficients {an}, {bn}, and {d} on N; they are independent of C, of course.

The mean square value, Q, for C =0 and general N follows immediately from
(D-12):

+ 2 for

k=1 k=1 (D-16

Combined with the result for average A in (D-7), there follows for the variance (65):

N-I1
V , -17 for C = 0 (D-17)

k=1 k

D-3
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An asymptotic expansion for (D-17) for large N is derived by using Watson's
lemma as follows:

N-1 o0 to
V--= f dt t exp(-kt) - f dt t -exp (-Nt)

T2 00 [ dteNt t

6 - 0 dt e 1 - exp(-t)

2 /21
"--- -j dt 1~ + t) = 2- N - N as N (D-18,

0 for C =0 (D-18)

where we used reference 12, eq. 3.411 9. Thus, whereas the variance of the
logarithmic device output tends to zero as N--oo if C > 0 (see (72)), the variance
saturates at n2/6 if C=0. Thus more pieces in the MSC estimate do not lead to
smaller variance for the In x transformation when C = 0. To compensate for this
feature, we have already observed in (58) that the average output gets arbitrarily
large as N increases, when C =0. This behavior is due to the singularity of the In x
transformation at x = 0.

D-4
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Appendix E

Modified Forms For Variance

The asymptotic expansion for the variance of the MC estimate is given by (68).
We rewrite it as

V = ( I = C) 2 I - 2C) 2 [(1 -C) 2 + 4C(1 - 3C)] + O(N-3)

8N C
(E-l)

As explained in appendix C, the singular term has a factor (I-C) 4 and would not
overly affect the variance approximation for the larger C values if it were dropped.
Thus we obtain the modified variance approximation for the MC estimate as

2 2
_(I _ C)2 (I _ C)2 (1 - 3C)

2N 2N2  (E-2)

For the arc tanh (x"') transformation, we rewrite (70) as

2 3
-L (I-C)Q -4C

V = 1 1-C2- 42+ O(N-3

2N 8N 2 C (E-3)

from which we immediately obtain, upon dropping the singular term, the modifica-
tion

V- 1f 2

2N (E-4)

For the v-th law device, we develop the bracketed term in (75) as

(1 + C) - 6v(1 + C)(1 - C) + 6v
2 (1 -C) 2

- (i - 6v + 6v2) (1 - C)2 + 4C(I - 3v(1 - C)) (E-5)

Substituting (E-5) in (75) and discarding the singular term (first term in bracket), we
obtain the modification

2 22( - C)2 C 2v - 1 4v( - C)2 C 2 -  (1 - 3v(1 - C))
N N 2

(E-6)

E- I/E-2
Reverse Blank
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Appendix F

Location of Peak of Probability Density Function

The probability density function is given by (4). If we use reference 10, page 194,
eq. 8.21.3, we find that

P(X)~ ( N)1/2 (1 - C) N (1 - x) N-2 [+ (1 r-X
[1r 1/1/ -

2C1 "4  x' 1  X) .2N-1 [ 16(N-

as N . (F-1)

In so far as locating the peak of (F-I), we need only concern ourselves with the
function

d (x) = a(x)bN(x) 1 Nf 1
N N ~-J (F-2)

where

-c 1 b x) - 1 X ___-"__a(x) -: 1 4 2 E - 2, f(x) (1x'(1 - x) (1 -4" ) z  16t4
(F-3)

The derivative of (F-2) is (in shorthand notation)

S= a' bN[ f aNb N  b'f +

N N - 3/2J N - 3/2 a N 3/2

(F-4)

Setting d = 0, we find we must solve QN = 0, where

(F-5)

To highest order, we must set either a or b ' to zero. But from (F-3), a(x)#0 in (0, 1).
Since

b' (x) = % - 3

(F-6)

we see that to highest order, the peak of dN occurs at

Xl =C
1 =(F-7)

F-I
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Now~ to find (thc correction term to x, of O(N- 1), w~e let

UN (F-8)

in (F-5), obtaining

Q NN2 (al + a' u)(b' + b" + N[(aj + a"j) (1b, + bi u)

+ (a + a' u)(b' + b t f + fru 3 + 001)

~N 2a b' Nra b u + a b" u + a' b + a b' (f - 13]+ 0(1)

-N~alb 1 u + a b1] + 0(1)(F)

the correction u in (F-8) as

a11 b a'(C) b(C)

a1b" a(C) b"(C)

We find from (F-3),

a(C) = 1 3 a f(C) I - 2C

C 1- C)C (1-C

b(C = I Pb_(C -1
b() 1 C' C 2C(l - C) 3  (-

Substitution in (F-10) yields

u =--(1 - C) (1 - 7C)

Combining this with (F-8), we find that the location of the peak of the probability
density function of the MSC estimate, ~,is at

C (1 -C)(1 - 7C)
2N '(F- 13)

t o 0(N -). The pert urbat ion (F- 12) has a maxi mu m val ue at C ~4/7 o f valuei 9 /14;
thus the maximum movement of the peak is 9/(14N).

F-2
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